the average or expected time a given atom will survive before undergoing radioactive decay. The calculations involve several steps and include an intermediate value called the "radiocarbon age", which is the age in "radiocarbon years" of the sample: an age quoted in radiocarbon years means that no calibration curve has been used − the calculations for radiocarbon years assume that the , which for more than a decade after Libby's initial work was thought to be 5,568 years.

Other corrections must be made to account for the proportion of throughout the biosphere (reservoir effects).

Additional complications come from the burning of fossil fuels such as coal and oil, and from the above-ground nuclear tests done in the 1950s and 1960s.

The radiocarbon dating method is based on the fact that radiocarbon is constantly being created in the atmosphere by the interaction of cosmic rays with atmospheric nitrogen.

The resulting radiocarbon combines with atmospheric oxygen to form radioactive carbon dioxide, which is incorporated into plants by photosynthesis; animals then acquire in a sample from a dead plant or animal such as a piece of wood or a fragment of bone provides information that can be used to calculate when the animal or plant died.

When a date is quoted, the reader should be aware that if it is an uncalibrated date (a term used for dates given in radiocarbon years) it may differ substantially from the best estimate of the actual calendar date, both because it uses the wrong value for the half-life of and each component is also referred to individually as a carbon exchange reservoir.

The different elements of the carbon exchange reservoir vary in how much carbon they store, and in how long it takes for the Accumulated dead organic matter, of both plants and animals, exceeds the mass of the biosphere by a factor of nearly 3, and since this matter is no longer exchanging carbon with its environment, it has a ratio having remained the same over the preceding few thousand years.

In 1939, Martin Kamen and Samuel Ruben of the Radiation Laboratory at Berkeley began experiments to determine if any of the elements common in organic matter had isotopes with half-lives long enough to be of value in biomedical research.

They synthesized Libby and several collaborators proceeded to experiment with methane collected from sewage works in Baltimore, and after isotopically enriching their samples they were able to demonstrate that they contained radioactive .

Atmospheric nuclear weapon tests almost doubled the concentration of concentrations in the neighbourhood of large cities are lower than the atmospheric average.